Preview

Allergology and Immunology in Paediatrics

Advanced search

Eosinophils in normal and pathological conditions. Structure, mediators, development

https://doi.org/10.53529/2500-1175-2023-1-5-15

Abstract

Eosinophils are the most important cell type. They have a variety of functions. Eosinophil as a separate cellular element was first described by Paul Ehrlich in 1879. Their number usually ranges from 1–4% of the total number of circulating leukocytes. The presence of large specific (secondary) granules is a characteristic feature that distinguishes eosinophils from other granulocytes. Primary granules, lipid bodies are also determined in the cell. Charcot — Leiden crystals are registered in the cytoplasm and granules. Eosinophils are the effector cells of natural immunity. Eosinophils have an ability to rapidly release a vast number of tissue mediators such as granule proteins, cytokines, neuromediators, enzymes and others. It should be noted that some of them are determined only in these cells. The concentrations of many mediators in eosinophils is much higher than in neutrophils. The development of eosinophils is determined by the interaction of a whole complex of transcription factors and cytokines. It is shown that new transcription factors and other molecules involved in the differentiation of these cells to be determined in the future. A more detailed characterization of eosinophil mediators will also be carried out.

About the Authors

A. S. Prilutskij
State Educational Organization of Higher Professional Education «M. Gorky Donetsk National Medical University»
Russian Federation

Prilutskij Aleksandr Sergeevich — Doctor of Medical Sciences, Professor of Department of Microbiology, Virology, Immunology and Allergology

283003, Ilyicha avenue, 16



O. V. Sorokina
State Educational Organization of Higher Professional Education «Donetsk National University»
Russian Federation

Sorokina Oksana Viktorovna — Master’s Degree student of the Department of Biochemistry and Organic Chemistry

283001, Universitetskaya st., 24



O. A. Prilutskaia
State Educational Organization of Higher Professional Education «M. Gorky Donetsk National Medical University»
Russian Federation

Prilutskaia Olga Aleksandrovna — Cand. Of Medical Sci., Associate Professor of the Department 

283003, Ilyicha avenue, 16



O. V. Baranova
State Educational Organization of Higher Professional Education «Donetsk National University»
Russian Federation

Baranova Oksana Viktorovna — Cand. of Chemical Sci., Associate Professor of the Department of Biochemistry and Organic Chemistry

283001, Universitetskaya st., 24



References

1. Kita H. Eosinophils: Multifaceted biologic properties and roles in health and disease. J Immunol Rev. 2011; 242 (1): 161–177. https://doi.org/10.1111/j.1600-065X.2011.01026.x.

2. Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol. 2017; 17 (12): 746–760. https://doi.org/10.1038/nri.2017.95.

3. Prilutskij AS, LyginaYuA. Allergiya k limonu: obzor literatury. Allergologiya i immunologiya v pediatrii. 2019; 4 (59): 4–14. (In Russ.) https://doi.org/10.24411/2500-1175-2019-00017

4. Prilutskij AS. Ispol’zovanie diet dlya profilaktiki i lecheniya pishhevoj allergii. Razreshitel’no-ehliminatsionnaya dieta.Vestnik gigieny i ehpidemiologii. 2020; 24 (4): 469–477. (In Russ.)

5. Prilutskij AS. Pishhevaya allergiya. Vozmozhnye puti povysheniya effektivnosti profilaktiki i lecheniya. Juvenis Scientia. 2022; 8 (2): 15–34. (In Russ.)

6. Chernyak BA, Vorzheva II. Ehozinofily i allergiya. Rossijskij allergologicheskij zhurnal. 2013; 4: 3–12. (In Russ.)

7. Smolkin YuS, Balabolkin II, Gorlanov IA, Kruglova LS, Kudryavtseva AV, Meshkova RYA, Migacheva NB, Khakimova RF, Cheburkin AA, Kuropatnikova EA, Lyan NA, Maksimova AV, Masal’skij SS, Smolkina OYU. Soglasitel’nyj dokument ADAIR: atopicheskij dermatit u detej — obnovlenie 2019 (kratkaya versiya), chast’ 1. Allergologiya i immunologiya v pediatrii. 2020; 60 (1): 4–25. (In Russ.) https://doi.org/10.24411/2500-1175-2020-10001.

8. Stone KD, Prussin C, Metcalfe DD. IgE, Mast Cells, Basophils, and Eosinophils. J Allergy Clin Immunol. 2010; 125 (2): 73–80. https://doi.org/10.1016/j.jaci.2009.11.017.

9. Wen T, Rothenberg ME. The Regulatory Function of Eosinophils. Microbiol Spectr. 2016; 4 (5). https://doi.org/10.1128/microbiolspec.MCHD-0020-2015. https://doi.org/10.1128/microbiolspec.mchd-0020-2015

10. Blanchard C, Rothenberg ME. Biology of the Eosinophil. Adv Immunol. 2009; 101: 81–121. https://doi.org/10.1016/S0065-2776(08)01003-1.

11. Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J. Biol Chem. 2014; 289: 17406–17415. https://doi.org/10.1074/jbc.r113.546218

12. Kandikattu HK, Venkateshaiah SU, Mishra A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev. 2019; 47: 83–98. https://doi.org/10.1016/j.cytogfr.2019.05.003.

13. Grozdanovic MM, Doyle CB, Liu L et al. Charcot–Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J Allergy Clin Immunol. 2020; 146: 377–389. https://doi.org/10.1016/j.jaci.2020.01.013

14. Melo RCN, Wang H, Silva TP et al. Galectin-10, the protein that forms Charcot–Leyden crystals, is not stored in granules but resides in the peripheral cytoplasm of human eosinophils. J Leukoc. Biol. 2020; 108: 139–149. https://doi.org/10.1002/jlb.3ab0220-311r

15. Ueki S, Tokunaga T, Melo RCN et al. Charcot–Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood. 2018; 132 (20): 2183–2187. https://doi.org/10.1182/blood-2018-04-842260

16. Acharya KR, Ackerman SJ. Eosinophil Granule Proteins: Form and Function. J Biol Chem. 2014; 289: 17406–17415. https://doi.org/10.1074/jbc.r113.546218

17. Bandeira-Melo C, Bozza P, Weller PF. The cellular biology of eosinophil eicosanoid formation and function. J Allergy Clin Immunol. 2002; 109: 393–400.

18. McBrien CN, Menzies-Gow A. Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne). 2017; 4: 93. https://doi.org/10.3389/fmed.2017.00093

19. Mori Y, Iwasaki H, Kohno K et al. Identification of the human eosinophil lineage-committed progenitor: Revision of phenotypic definition of the human common myeloid progenitor. The Journal of Experimental Medicine. 2009; 206 (1): 183–193. https://doi.org/10.1084/jem.20081756.

20. Hirasawa R, Shimizu R, Takahashi S et al. Essential and instructive roles of GATA factors in eosinophil development. J Exp Med. 2002; 195 (11): 1379–1386.

21. Tamura T, Kurotaki D, Koizumi S. Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol. 2015; 101 (4): 342–351. https://doi.org/10.1007/s12185-015-1761-9

22. Ackerman SJ, Bochner B.S. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol Allergy Clin North Am. 2007; 27 (3): 357–375. https://doi.org/10.1016/j.iac.2007.07.004.

23. Milanovic M, Terszowski G, Struck D et al. IFN consensus sequence binding protein (Icsbp) is critical for eosinophil development. J Immunol. 2008; 181 (7): 5045–5053. https://doi.org/10.1182/blood-2008-02-139741

24. Mack AE, Stein SJ, Rome KS et al. Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program. Blood. 2019; 133 (22): 2413–2426. https://doi.org/10.1182/blood.2018872218.

25. Lekstrom-Himes JA. The role of C/EBP (epsilon) in the terminal stages of granulocyte differentiation. Stem Cells. 2001; 19 (2): 125–133.

26. Gombart AF, Kwok SH, Anderson KL et al. Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBP epsilon and PU.1. Blood. 2003; 101 (8): 3265–3273.

27. Bedi R, Du J, Sharma AK et al. Human C/EBP epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood. 2009; 113 (2): 317–327.

28. Fulkerson PC, Rothenberg ME. Eosinophil Development, Disease Involvement, and Therapeutic Suppression. Adv Immunol. 2018; 138: 1–34. https://doi.org/10.1016/bs.ai.2018.03.001.

29. Bouffi C, Kartashov AV, Schollaert KL et al. Transcription Factor Repertoire of Homeostatic Eosinophilopoiesis. J Immunol. 2015; 195 (6): 2683–2695. https://doi.org/10.4049/jimmunol.1500510

30. Felton MJ, Bouffi C, Schwartz JT. Aiolos regulates eosinophil migration into tissues. Mucosal Immunol. 2021; 14 (6): 1271– 1281. https://doi.org/10.1038/s41385-021-00416-4

31. Sy CB, Siracusa MC. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation. Front Physiol. 2016; 7: 214. https://doi.org/10.3389/fphys.2016.00214.

32. Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified? Nat Rev Immunol. 2010; 10: 225–235. doi:10.1038/nri2735.

33. Anderson EL, Kobayashi T, Iijima K. IL-33 mediates reactive eosinophilopoiesis in response to airborne allergen exposure. Allergy. 2016; 71: 977–988. doi:10.1111/all.12861.

34. Johnston LK, Hsu CL, Krier-Burris RA et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016; 197: 3445–3453. https://doi.org/10.4049/jimmunol.1600611

35. Mitchell PD, O’Byrne PM. Epithelial-Derived Cytokines in Asthma. Chest. 2017; 151: 1338–1344. https://doi.org/10.1016/j.chest.2016.10.042

36. Salvo MD, Pastorelli L, Petersen CP et al. Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone. Gastroenterology. 2021; 160 (1): 302–316. https://doi.org/10.1053/j.gastro.2020.09.040.

37. Gadkar K, Feigelman J, Sukumaran S et al. Integrated systems modeling of severe asthma: Exploration of IL-33/ST2 antagonism CPT Pharmacometrics. Syst Pharmacol. 2022. https://doi.org/10.1002/psp4.12842.

38. Angulo EL, McKernan EM, Fichtinger PS et al. Comparison of IL-33 and IL-5 family mediated activation of human eosinophils. PLoS One. 2019; 14 (9). https://doi.org/10.1371/journal.pone.0217807.

39. Chan BCL, Lam CWK, Lai-Shan Tam et al. IL33: Roles in Allergic Inflammation and Therapeutic Perspectives. Front Immunol. 2019; 4 (10): 364. https://doi.org/10.3389/fimmu.2019.00364.

40. Heffler E, Allegra A, Pioggia G et al. MicroRNA profiling in asthma: Potential biomarkers and therapeutic targets. Am J Respir Cell Mol Biol. 2017; 57: 642–650. https://doi.org/10.1165/rcmb.2016-0231tr

41. Morshed M, Yousefi S, Stöckle C et al. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy. 2012; 67: 1127–1137. https://doi.org/10.1111/j.1398-9995.2012.02868.x.

42. Wong CK, Hu S, Cheung PF et al. Thymic Stromal Lymphopoietin Induces Chemotactic and Prosurvival Effects in Eosinophils: Implications in Allergic Inflammation. Am J Respir Cell Mol Biol. 2010; 43 (3): 305–315. https://doi.org/10.1165/rcmb.2009-0168OC.

43. Hui CC, Yu A, Heroux D et al. Thymic Stromal Lymphopoietin (TSLP) Secretion From Human Nasal Epithelium is a Function of TSLP Genotype. Mucosal Immunol. 2015; 8 (5): 993–999. https://doi.org/10.1038/mi.2014.126.

44. Iwasaki H, Mizuno S, Mayfield R et al. Identification of eosinophil lineage-committed progenitors in the murine bonemarrow. J Exp Med. 2005; 201: 1891–1897. https://doi.org/10.1084/jem.20050548.


Review

For citations:


Prilutskij A.S., Sorokina O.V., Prilutskaia O.A., Baranova O.V. Eosinophils in normal and pathological conditions. Structure, mediators, development. Allergology and Immunology in Paediatrics. 2023;(1):5-15. (In Russ.) https://doi.org/10.53529/2500-1175-2023-1-5-15

Views: 1323


ISSN 2500-1175 (Print)
ISSN 2712-7958 (Online)