Comparison of vaccination coverage of children of the first year of life in the pre-pandemic period and during the COVID-19 pandemic

RAR — научная статья

https://doi.org/10.53529/2500-1175-2025-1-40-49

Date of receipt: 09.12.2024 Date of acceptance: 03.03.2025 Date of publication: 21.03.2025

Natalia A. Belykh, Polina O. Kotova, <u>Inna V. Piznyur</u>, Elena V. Stezhkina

Federal State Budgetary Educational Institution of Higher Education "Ryazan State Medical University named after Academician I. P. Pavlov" of the Ministry of Health of the Russian Federation, 390026, Ryazan, Vysokovoltnaya str., 9, Russia

Natalia Anatolyevna Belykh — Dr. Sci., Associate Professor, Head of the Department of Faculty and Polyclinic Pediatrics with the course of Pediatrics of the FDPO, Ryazan State Medical University named after Academician I. P. Pavlov, ORCID ID: 0000-0002-5533-0205, e-mail: nbelyh68@mail.ru.

Polina Olegovna Kotova — first-year resident in pediatrics at the Department of Faculty and Polyclinic Pediatrics with a course in pediatrics of the FDPO, Ryazan State Medical University named after Academician I. P. Pavlov, ORCID ID: 0000-0002-0792-3233, e-mail: polina.iertskina@mail.ru.

Inna Vladimirovna Pisnyur — Assistant of the Department of Faculty and Polyclinic Pediatrics with the course of Pediatrics of the FDPO, Ryazan State Medical University named after Academician I. P. Pavlov, ORCID ID: 0000-0002-9267-439X, e-mail: innaabramova@yandex.ru.

Abstract

Introduction. Vaccination remains the most effective measure to combat infectious diseases. The COVID-19 pandemic has made adjustments to the work of pediatric health services around the world, which has affected all aspects of life, including routine immunization of children.

Objective. To analyze the indicators of coverage and timeliness of vaccination of children of the first year of life in the pre-pandemic period and during the COVID-19 pandemic, to assess the frequency and severity of post-vaccination reactions in children of the first year of life.

Materials and methods. A retrospective single-center study of medical documentation (form 112/y) of 414 children was conducted on the basis of GBU RO "City Children's Polyclinic No. 3" in Ryazan, who were divided into 2 groups: group 1- children born in 2018 (n = 256), among whom 47.5% (n = 122) were girls, 51.5% (n = 134) are boys, group 2 are children born in 2020 (n = 158), of which 49% (n = 77) are girls, 51% (n = 81) are boys. The assessment of intergroup differences was carried out using the Pearson criterion (χ^2), adjusted for small samples. The difference in values was considered statistically significant at p < 0.05. **Results.** Vaccination coverage in 2018 and 2020 was 95% and 98%, respectively (p < 0.05). The post-vaccination period in the majority of vaccinated children in group 1 (85%, n = 208) and in group 2 (81%, n = 128) proceeded smoothly (p = 0.04).

Conclusion. The COVID-19 pandemic did not have a negative impact on routine vaccination in the population of children in the first year of life.

Keywords: vaccination, children, pandemic, COVID-19

Competing interests:

The authors declare that they have no competing interests.

For citation: Belykh N.A., Kotova P.O., Pisnyur I.V., Stezhkina E.V. Comparison of vaccination coverage of children of the first year of life in the pre-pandemic period and during the COVID-19 pandemic. *Allergology and Immunology in Pediatrics*. 2025; 23 (1): 40–49. https://doi.org/10.53529/2500-1175-2025-1-40-49

Для корреспонденции:

Пизнюр Инна Владимировна, ассистент кафедры факультетской и поликлинической педиатрии с курсом педиатрии ФДПО, ФГБОУ ВО «Рязанский государственный медицинский университет имени академика И. П. Павлова».

Адрес: 390026, г. Рязань, ул. Высоковольтная, д. 9, Россия.

E-mail: innaabramova@yandex.ru.

For correspondence:

Inna Vladimirovna Pisnyur, Assistant of the Department of Faculty and Polyclinic Pediatrics with the Course of Pediatrics of Ryazan State Medical University.

Address: 390026, Ryazan, Vysokovoltnaya str., 9, Russia.

E-mail: innaabramova@yandex.ru.

Сравнение охвата вакцинацией детей первого года жизни в допандемийный период и во время пандемии COVID-19

https://doi.org/10.53529/2500-1175-2025-1-40-49

УДК 614.47-053.36 Дата поступления: 09.12.2024 Дата принятия: 03.03.2025 Дата публикации: 21.03.2025

Белых Н. А., Котова П. О., Пизнюр И. В., Стежкина Е. В.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный медицинский университет имени академика И. П. Павлова» Министерства здравоохранения Российской Федерации, 390026, г. Рязань, ул. Высоковольтная, 9, Россия

Белых Наталья Анатольевна — д. м. н., доцент, заведующая кафедрой факультетской и поликлинической педиатрии с курсом педиатрии ФДПО, ФГБОУ ВО «Рязанский государственный медицинский университет имени академика И. П. Павлова», ORCID ID: 0000-0002-5533-0205, e-mail: nbelyh68@mail.ru.

Котова Полина Олеговна — ординатор первого года обучения по специальности педиатрия кафедры факультетской и поликлинической педиатрии с курсом педиатрии ФДПО, ФГБОУ ВО «Рязанский государственный медицинский университет имени академика И. П. Павлова», ORCID ID: 0000-0002-0792-3233, e-mail: polina.iertskina@mail.ru.

Пизнюр Инна Владимировна — ассистент кафедры факультетской и поликлинической педиатрии с курсом педиатрии ФДПО, ФГБОУ ВО «Рязанский государственный медицинский университет имени академика И. П. Павлова», ORCID ID: 0000-0002-9267-439X, e-mail: innaabramova@yandex.ru.

Стежкина Елена Викторовна — к. м. н., доцент кафедры факультетской и поликлинической педиатрии с курсом педиатрии ФДПО, ФГБОУ ВО «Рязанский государственный медицинский университет имени академика И. П. Павлова», ORCID ID 0000-0002-1806-0787, e-mail: polus1972@yandex.ru.

Аннотация

Актуальность. Вакцинопрофилактика остается наиболее эффективной мерой борьбы с инфекционными заболеваниями. Пандемия COVID-19 внесла коррективы в работу педиатрической службы здравоохранения во всем мире, что отразилось на всех аспектах жизнедеятельности, в том числе на проведении плановой иммунизации детей.

Цель. Проанализировать показатели охвата и своевременности вакцинации детей первого года жизни в допандемийный период и во время пандемии COVID-19, оценить частоту и тяжесть поствакцинальных реакций у детей первого года жизни.

Материалы и методы. На базе ГБУ РО «Городская детская поликлиника № 3» г. Рязань проведено ретроспективное одноцентровое исследование медицинской документации (форма 112/у) 414 детей, которые были разделены на 2 группы: 1-я группа — дети 2018 года рождения (n = 256), среди которых 47,5% (n = 122) девочки, 51,5% (n = 134) мальчики, 2-я группа — дети 2020 года рождения (n = 158), из них 49% (n = 77) девочки, 51% (n = 81) мальчики. Оценка межгрупповых различий осуществлялась с использованием критерия Пирсона (χ^2) с поправкой для малых выборок. Разницу значений считали статистически значимой при р < 0,05.

Результаты. Охват вакцинацией в 2018 году и 2020 году составил 95% и 98% соответственно (p < 0.05). Поствакцинальный период у большинства вакцинированных детей в 1-й группе (85%, n = 208) и во 2-й группе (81%, n = 128) протекал гладко (p = 0.04).

Заключение. Пандемия COVID-19 не оказала негативного влияния на проведение плановой вакцинации в популяции детей первого года жизни.

Ключевые слова: вакцинация, дети, пандемия, COVID-19

Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Белых Н.А., Котова П.О., Пизнюр И.В., Стежкина Е.В. Сравнение охвата вакцинацией детей первого года жизни в допандемийный период и во время пандемии COVID-19. *Аллергология и иммунология в педиатрии*. 2025; 23 (1): 40–49. https://doi.org/10.53529/2500-1175-2025-1-40-49

INTRODUCTION. Routine immunization is one of the most effective and cost-effective public health measures to control infectious diseases in children [1, 2]. Experts estimate that immunization of the pediatric population saves 2 to 3 million lives annually worldwide, which contributes significantly to the reduction of the global infant mortality rate. As a result of collaborative international initiatives, vaccination

coverage rates for children in low-income countries have increased from 50% to 80% over the past two decades [3]. As vaccination coverage has improved and protection of both vaccinated and unvaccinated populations has increased due to the phenomenon of collective immunity, there has been a significant decline in the registration of infections on the vaccination calendar [4].

On March 11, 2020, the World Health Organization declared COVID-19 a pandemic and a threat to public health and health systems worldwide. One of the pressing issues raised by the pandemic conditions was the continued implementation of routine vaccination as part of the National Vaccination Calendar [1]. The need for self-isolation, social distancing and other quarantine measures significantly reduced the demand for vaccination, and the population became fearful of becoming infected when visiting health facilities [5, 6]. As Henrietta Fore, Executive Director of the United Nations International Children's Emergency Fund (UNICEF), aptly describes this phenomenon: "COVID-19 has turned routine vaccination into a daunting challenge..." [7]. Disruption of immunization schedules, even for short periods, causes an increase in the number of susceptible individuals and increases the likelihood of infectious disease outbreaks. Such outbreaks can cause increased morbidity and mortality, mainly among young children as well as other vulnerable groups [8, 9].

Most studies worldwide have reported decreased rates or delayed routine vaccination during the COV-ID-19 pandemic. Brazilian researchers Santos V. et al (2023) conducted a retrospective analysis of all administered vaccine doses to children under 6 years of age from January 2019 to December 2020, in which the authors concluded that vaccination coverage decreased during the COVID-19 pandemic [10]. A team of clinicians from the University Clinical Research Center of Bamako, Mali, compared vaccination coverage during the pre-pandemic period in 2019 and during the COV- ID-19 pandemic in 2020. Coverage in 2019 was higher than in 2020 (88.7% vs. 71.6%), with the lowest proportion of vaccinated children (51.1%) observed in May 2020, two months after the first COVID-19 case in Mali [11]. A similar study was conducted in the United States (2023), where the authors analyzed data from 48,576 children under 24 months of age from 2018 to 2021 using a special questionnaire of the National Immunization Survey-Child (NIS-Child). It is reported that there was no overall decrease in vaccination coverage associated with the COVID-19 pandemic among all children, but vaccination coverage for children living below the poverty line or living in rural areas was reduced [3].

Russian vaccination studies confirm low vaccine coverage during the pre-pandemic period and its decline during the COVID-19 pandemic. For example, the Research Institute of Pediatrics and Child Health Protection (Moscow) conducted a single-stage multicenter study (2020) that included data from 2687 children from different regions of Russia. The authors concluded that immunization coverage and vaccination rates vary widely by age and region, vaccination timelines are not respected, and influenza vaccination coverage is catastrophically low [12].

The role of pediatricians in the development of vaccination adherence is undeniable [13]. It is worth noting that the low level of adherence and the majority of vaccination refusals are due to parents' lack of knowledge on this issue, which is confirmed by numerous studies in this area [13, 14]. However, for many parents, the doctor's opinion is a priority, and that is why it is so important for health workers to be able to build a friendly dialogue and provide up-to-date information about the importance and safety of vaccination [13, 14].

The first case of COVID-19 in the Ryazan region was detected in an adult patient on March 19, 2020. Thereafter, there has been a steady increase in the number of cases, including 530 children as of July 21, 2020. Forced self-isolation and physical distancing measures could undoubtedly have affected routine vaccination of children, especially those in the first year of life.

STUDY OBJECTIVE. Analyze the rates of coverage and timeliness of vaccination of children of the first year of life in the pre-pandemic period and during the COVID-19 pandemic, assess the frequency and severity of post-vaccine reactions in children of the first year of life.

MATERIALS AND METHODS. A retrospective single-center study of medical records (form 112/u) of 414 children living in the city of Ryazan was conducted. Children were divided into 2 groups:

Group 1 included children born in 2018 (n = 256), among whom 47.5% (n = 122) were girls and 51.5% (n = 134) boys. Group 2 included children born in 2020 (n = 158), among whom 49.0% (n = 77) were girls and 51.0% (n = 81) were boys (p > 0.05).

The base for the study was SBI RO "City Children's Polyclinic № 3" (chief physician A. O. Burdukova), Ryazan.

Statistical processing of the results was performed using Microsoft Office Excel 2016. Intergroup differences were assessed using Pearson's criterion (χ^2) with correction for small samples. The difference in values was considered statistically significant at p < 0.05.

RESULTS. The analysis of vaccination coverage of children in the first year of life showed the following data: in Group 1, 95.7% of children (n = 245) were vaccinated in accordance with the National Vaccination Calendar, of whom 53.0% (n = 130) were fully vaccinated, 47.0% (n = 115) were partially vaccinated, and the parents of 4.3% of children (n = 11) completely refused preventive vaccinations for personal reasons. In Group 2, vaccination coverage was 100% (n = 158 children), of whom 56.0% (n = 88) were fully vaccinated by one year, 44.0% (n = 70) — partially (p=0.02) [15].

When assessing vaccination coverage against viral hepatitis B (HBV), an increase in the proportion of vaccinated children in Group 2 was noted. Thus, in Group 1, hepatitis B vaccination coverage by the age of 6 months was 47.0% (n = 121), and 86.0% of children (n = 222) had been vaccinated by the end of the first year of life. In Group 2, 60.0% of children (n = 95) were fully immunized against HBV in a timely manner, and 83.0% of children (n = 132) were immunized by the end of the 1st year of life (p = 0.02) (Table 1).

According to our data, in Group 1, 4.5% of children (n = 11) were not vaccinated against tuberculosis before 1.5 years of age, 7.0% (n = 18) were vaccinated before 1.5 years of age due to temporary contraindications, but the majority 88.5% (n = 227) were vaccinated on time. In Group 2, all children received BCG-M vaccine, with 94.0% (n = 149) of children vaccinated on time and 6.0%

(n = 9) vaccinated in the 1st year of life (p > 0.05) (Table 1).

It is worth noting that children receive their first HBV and BCG-M vaccine in the newborn period, and most received them on time, both pre-pandemic and during the COVID-19 pandemic period.

Vaccination coverage against pneumococcal infection (PCI) was significantly higher in Group 2: 63.0% of children (n = 100) were vaccinated on time, compared to only 29.0% (n = 74) in Group 1 (p = 0.001), and against Haemophilus influenzae (Hib): 28.5% of children (n = 73) in Group 1 and 89.0% of children (n = 40) in Group 2 (p = 0.000) (Table 1). This was facilitated by the active use of combined pentavalent vaccine, which entered the national calendar of preventive vaccinations in 2017, and has received the most active use in the last five years.

When analyzing influenza vaccination coverage among children, disappointing results were obtained. In Group 1, only 1.6% of children (n = 4) were vaccinated before the age of 1.5 years, and in Group 2, no one received an influenza vaccine (p > 0.05) (Table 1). At the same time, according to the National Preventive Vaccination Calendar, annual influenza vaccination is recommended for all children starting from 6 months of life.

IIWhen assessing the vaccination coverage of children against diphtheria, tetanus, and pertussis, the following data were obtained: in Group 1, only 38.0% of children (n = 97) were immunized three times by 6 months of age, and 48.0% of children (n = 122) by one year of age; in Group 2, 68.0% of children (n = 107) were immunized on time, and 86.0% (n = 136) by one year of age (p > 0.05) (Table 1). A similar situation was observed when assessing poliomyelitis vaccination coverage.

When assessing measles, mumps and rubella (MMR) vaccination coverage, it was found that the proportion of children who did not receive the vaccine before 1.5 years of age increased in Group 2. In group 1 this indicator amounted to 5.0% (n = 15), in group 2 - 14.0% (n = 23) (p = 0.005). At the same time, in Group 2, the number of children who received the MMR vaccine in time increased almost 1.5-fold (Table 1).

Table 1. Comparison of vaccination coverage in children of the 1st year of life (author's table) Таблица 1. Сравнение охвата вакцинацией детей 1-го года жизни (таблица автора)

V flu	V HIB	V MMR	V3 OPV	V2 IPV	V1 IPV	V3 CDTV	V2 CDTV	V1 CDTV	V2 PCI	V1 PCI	V BCG	V3 HVB	V2 HBV	V1 HBV	Vac- cine
4 (1,6%)	73 (28,5%)	128 (50,0%)	94 (37,0%)	104 (41,0%)	141 (55,0%)	94 (37,0%)	104 (41,0%)	141 (55,0%)	61 (29,0%)	80 (37,0%)	227 (88,5%)	121 (47,0%)	143 (56,0%)	204 (80,0%)	Done on time Group 1 Gro (n=256) (n=
0	140 (89,0%)	106 (67,0%)	107 (68,0%)	113 (71,0%)	121 (77,0%)	107 (68,0%)	113 (71,0%)	121 (77,0%)	100 (63,0%)	108 (68,0%)	149 (94,0%)	95 (60,0%)	111 (70,0%)	146 (92,0%)	up 2 158)
0,289	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,080	0,015	0,005	0,001	D
I	0,051 (0,029– 0,090)	0,491 (0,325– 0,711)	0,277 (0,178– 0,417)	0,272 (0,178– 0,417)	0,226 (0,241– 0,584)	0,277 (0,182– 0,421)	0,272 (0,178– 0,417)	0,375 (0,241– 0,584)	0,178 (0,115– 0,274)	0,210 (0,137– 0,322)	0,473 (0,218– 1,027)	0,594 (0,89– 0,398)	0,536 (0,352– 0,816)	3,530 (1530– 8,141	OR (CI)
I	I	I	115 (45,0%)	123 (48,0%)	93 (36,5%)	115 (45,0%)	123 (48,0%)	93 (36,5%)	65 (31,0%)	67 (31,0%)	I	101 (39,0%)	97 (38,0%)	36 (13,8%)	Done from Group 1 (n=256)
I	I	l	21 (13,0%)	29 (18,0%)	34 (21,5%)	21 (13,0%)	29 (18,0%)	34 (21,5%)	12 (8,0%)	17 (11,0%)	I	37 (23,0%)	37 (23,0%)	7 (4,0%)	Done from infancy up to 1 year Group 1 Group 2 OR (n=256) (n=158) P (CI)
I	I	1	0,000	0,000	0,002	0,000	0,000	0,002	0,000	0,000	I	0,001	0,003	0,003	up to 1
I	I	I	5,246 (3,117– 8,832)	4,114 (2,567– 6,592)	2,081 (1,318– 3,286)	5,321 (3,160– 8,960)	4,114 (2,567– 6,592)	2,081 (1,318– 3,286)	4,140 (2,156– 7,951)	2,940 (1,654– 5,226)	T	2,131 (1,365– 3,327)	1,995 (1,277– 3,118)	3,530 (1,530– 8,141)	year OR (CI)
I	I	113 (45,0%)	34 (13,0%)	15 (6,0%)	9 (3,5%)	34 (13,0%)	15 (6,0%)	9 (3,5%)	26 (12,0%)	14 (7,0%)	18 (7,0%)	20 (8,5%)	2 (1,0%)	3 (1,2%)	Done fro Group 1 (n=256)
I	I	30 (12,0%)	20 (13,0%)	12 (8,0%)	2 (1,0%)	20 (13,0%)	12 (8,0%)	2 (1,0%)	6 (4,0%)	12 (8,0%)	9 (6,0%)	17 (12,0%)	7 (5,0%)	2 (1,0%)	Done from infancy up to Group 1 Group 2 (n=256) (n=158)
I	I	0,000	0,857	0,624	0,235	0,981	0,755	0,235	0,030	0,230	0,740	0,311	0,026	0,807	
I	I	3,372 (2,112– 5,383)	1,057 (0,585– 1,910)	0,757 (0,345– 1,663)	2,842 (0,606– 13,327)	1,057 (0,585– 1,910)	0,757 (0,345– 1,663)	2,842 (0,606– 13,327)	2,675 (1,075– 6,660)	0,704 (0,317– 1,563)	1,252 (0,548– 2,860)	0,703 (0,356– 1,387)	0,170 (0,035– 0,828)	0,925 (0,153– 5,597)	1,5 years OR (CI)
252 (98,4%)	183 (71,5%)	15 (5,0%)	13 (5,0%)	14 (5,0%)	13 (5,0%)	13 (5,0%)	14 (5,0%)	13 (5,0%)	57 (28,0%)	55 (25,0%)	11 (4,5%)	14 (5,5%)	14 (5,0%)	13 (5,0%)	Not done Group 1 (n=256)
158 (100%)	18 (11,0%)	23 (14,0%)	10 (6,0%)	4 (3,0%)	1 (0,5%)	10 (6,0%)	4 (3,0%)	1 (0,5%)	40 (25,0%)	21 (13,0%)	0	9 (5,0%)	3 (2,0%)	3 (2,0%)	Not done until 1.5 years Group 1 Group 2 (n=256) (n=158)
0,299	0,000	0,005	0,750	0,240	0,031	0,750	0,240	0,031	0,553	0,050	0,020	0,902	0,128	0,171	years p
I	19,498 (11,123– 34,161)	0,365 (0,184– 0,724)	0,742 (0,339– 1,851)	2,277 (0,720– 6,891)	8,399 (1,088– 64,840)	0,742 (0,339– 1,851)	2,277 (0,720– 6,891)	8,399 (1,088– 64,840)	0,845 (1,088– 1,344)	1,785 (1,032– 3,087)	T	0,958 (0,405– 2,268)	2,989 (0,845– 10,571)	2,764 (0,775– 9,857)	OR (CI)

In the pre-pandemic period and during the COV-ID-19 pandemic, there was non-compliance with the vaccine administration dates regulated by the National Vaccination Calendar. Thus, 88.5% of children in Group 1 (n = 227) were timely immunized against tuberculosis, and 94.0% of children in Group 2 (n = 149) (p > 0.05). In Group 1, 60.0% of children (n = 126) and 71.0% of children (n = 112) in Group 2 received timely PCI (p = 0.000). Against diphtheria, pertussis and tetanus, 48.0% of children (n = 122) in Group 1 and 86.0% of children (n = 136) in Group 2 were immunized three times before the age of 1 year (p = 0.001). In Group 1, 50.0% of children (n = 128)received the MMR vaccine on time, and 67.0% of children (n = 106) in Group 2 (p = 0.001). At the same time, the proportion of children who received all vaccines on time increased in Group 2 (Figure 1).

The postvaccinal period in 85.0% of children (n = 208) in Group 1 and in 81.0% of children (n = 128) in Group 2 proceeded smoothly (p > 0.05). In the structure of postvaccinal reactions in Group 1 children, the leading conditions were temperature reaction (87.0%, n = 32) and local reaction in the form of local hyperemia (13.0%, n = 5). In Group 2 children, the following structure of postvaccinal reactions was observed: in 93.0% of children (n = 28) — temperature reaction, in 7.0% (n = 2) — local hyperemia (p > 0.05).

DISCUSSION

In our study, there was no negative impact of the new coronavirus pandemic on routine immunization of children in the first year of life. Vaccination coverage remained high despite the ongoing pandemic, moreover, the proportion of children immunized against pneumococcal and Haemophilus influenzae infections increased significantly, but the percentage of influenza vaccine coverage among children remained low.

CONCLUSION. Vaccination coverage of children of the 1st year of life in GBI RO "City Children's Polyclinic № 3" in Ryazan in 2018 and 2020 remained high and amounted to 95.0% and 98.0%, respectively. Pandemic COVID-19 did not have a negative impact on the implementation of routine vaccination, moreover, parents have become more responsible for immunization. Thanks to effective measures carried out in GBI RO "City Children's Polyclinic № 3" in Ryazan, it was possible to implement the plan for immunization of children in 2020, despite the ongoing pandemic of a new coronavirus infection.

The role of immunization in improving the quality of life of the population is undeniable. Insufficient immunization coverage may be related to lack of knowledge and awareness of parents about the importance of vaccination, safety and efficacy of modern vaccines, accessibility issues [16, 17, 18].

Despite the challenges to preventive health care services during the COVID-19 pandemic, continuity of immunization services for children, especially

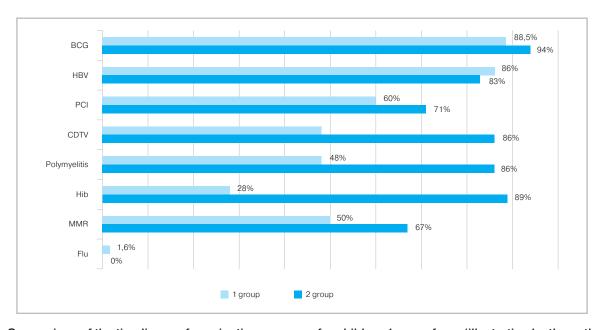


Fig. 1. Comparison of the timeliness of vaccination coverage for children 1 year of age (illustration by the author)

Рис. 1. Сравнение своевременности охвата вакцинацией детей 1 года жизни (иллюстрация автора)

those in the first year of life, is essential to make progress in vaccination as well as to prevent outbreaks of infectious diseases [1, 5]. Against the backdrop of the COVID-19 pandemic and non-compliance with the National Calendar's vaccination schedule or refusal to vaccinate, pediatricians and other health care providers have a particular influence on increasing population adherence to immuniza-

tion [19, 20]. If it is not possible to ensure routine vaccination within the National Calendar dates, district pediatricians should use the opportunity of an individual approach to conduct "catch-up" vaccination using highly effective and safe combination vaccines [21]. Special attention should be paid to influenza vaccination in designated age groups [22].

REFERENCES

- 1. Girina A.A., Zaplatnikov A.L., Petrovsky F.I. Vaccination of children within the framework of the national calendar of preventive vaccinations during the COVID-19 pandemic: problems and solutions. Russian medical journal. Mother and child. 2021; 4 (1): 85–89. (In Russ.) https://doi.org/10.32364/2618-8430-2021-4-1-85-89.
- 2. Shukla V.V., Shah R.C. Vaccinations in Primary Care. Indian J Pediatr. 2018; 85 (12):1118–1127. https://doi.org/10.1007/s12098-017-2555-2.
- 3. Hill H.A., Chen M., Elam-Evans L.D., et al. Vaccination Coverage by Age 24 Months Among Children Born During 2018–2019 National Immunization Survey—Child, United States, 2019–2021. MMWR Morb Mortal Wkly Rep. 2023; 72: 33–38. https://doi.org/10.15585/mmwr.mm7202a3.
- 4. Shirokostup S.V., Lukyanenko N.V., Saldan I.P. Epidemiological analysis of the incidence of tick-borne viral encephalitis in the rural population of the Siberian Federal District. Eruditio Juvenium. 2019; 7 (4): 518–525. https://doi.org/10.23888/HMJ201974518-525.
- Olusanya O.A., Bednarczyk R.A., Davis R.L. et al. Addressing Parental Vaccine Hesitancy and Other Barriers to Childhood/Adolescent Vaccination Uptake During the Coronavirus (COVID-19) Pandemic. Front. Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.663074.
- 6. Wang W., Zhang X.X., Zhang Z.N., et al. Trust in vaccination and its influencing factors among parents of children aged 0–6 years. Zhonghua Yu Fang Yi Xue Za Zhi. 2022; 56 (12): 1821–1827. https://doi.org/10.3760/cma.j.cn112150-20220211-00124.
- 7. Faksová K., Laksafoss A.D., Hviid A. COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine. 2024; 42 (9): 2200–2211. https://doi.org/10.1016/j.vaccine.2024.01.100.
- 8. Ackerson B.K., Sy L.S., Glenn S.C., et al. Pediatric Vaccination During the COVID-19 Pandemic. Pediatrics. 2021; 148 (1): e2020047092. https://doi.org/10.1542/peds.2020-047092.
- 9. Buchy P, Badur S. Who and when to vaccinate against influenza. Int J Infect Dis. 2020; 93: 375–387. https://doi.org/10.1016/j. ijid.2020.02.040.
- 10. Domingues C.M.A.S., Teixeira A.M.D.S., Moraes J.C. Vaccination coverage in children in the period before and during the COV-ID-19 pandemic in Brazil: a time series analysis and literature review. Jornal de Pediatria. 2023; 99 (1): 12–21. https://doi.org/10.1016/j.jped.2022.11.004.
- 11. Diallo M., Dicko I., Dembele S. et al. Comparing vaccination coverage before and during COVID-19 pandemic in children under one year in the health district of commune V in Bamako, Mali. BMC Pediatrics. 2023; 23: 599. https://doi.org/10.1186/s12887-023-04416-0.
- 12. Namazova-Baranova L.S., Fedoseenko M.V., Grinchik P.R., Girina A.A., Kovalev S.V., Mazokha A.V., Makushina E.D., Malinina E.I., Musikhina A.Yu., Perminova O.A., Plenskovskaya N.Y., Privalova T.E., Rychkova O.A., Semerikov V.V., Fominykh M.V., Fugol D.S., Yakimova N.V., Rtishchev A.Yu., Rusinova D.S. Immunization and Immunization Coverage According to National Immunization Schedule for Children Population: Cross-Sectional Multi-Centre Study. Pediatric pharmacology. 2021; 18 (2): 110–117. (In Russ.) https://doi.org/10.15690/pf.v18i2.2218.
- 13. Antonov O.V., Roshchina O. V., Antonova I.V., Ponkrashina, L.P. (2024). Vaccination and immunity: the role of the pediatrician in shaping parents' commitment to preventive measures. Scientific Bulletin of the Omsk State Medical University. 2024; 4 (2): 20–27. (In Russ.) https://doi.org/10.61634/2782-3024-2024-14-20-27.
- 14. Galitskaya M.G., Lebedeva A.M., Tkachenko N.E., Makarova S.G. Adherence to vaccination: main trends in modern society. Russian Pediatric Journal. 2022; 25 (4): 253–253. (In Russ.)

- 15. Kotova P.O. Comparison of vaccination coverage for infants before and during the COVID-19 pandemic. Materials of the X All-Russian Student Scientific and Practical Conference with International participation "Topical Issues of Student Medical Science and Education", dedicated to the 175th anniversary of the birth of Academician I.P. Pavlov and the 120th anniversary of his Nobel Prize; Riaz State Medical University of the Ministry of Health of the Russian Federation, 2024: 102–103. (In Russ.)
- 16. Kaur G., Danovaro-Holliday M.C., Mwinnyaa G., et al. Routine Vaccination Coverage Worldwide, 2022. MMWR Morb Mortal Wkly Rep. 2023; 72 (43): 1155–1161. https://doi.org/10.15585/mmwr.mm7243a1.
- 17. Liu Y., Bruine de Buin W., Kapteyn A., Szilagyi P.G. Role of Parents' Perceived Risk and Responsibility in Deciding on Children's COVID-19 Vaccination. Pediatrics. 2023; 151 (5): e2022058971. https://doi.org/10.1542/peds.2022-058971.
- 18. Caudal H., Briend-Godet V., Caroff N., et al. Vaccine distrust: Investigation of the views and attitudes of parents in regard to vaccination of their children. Ann Pharm Fr. 2020; 78 (4): 294–302. https://doi.org/10.1016/j.pharma.2020.03.003.
- 19. Qu S., Yang M., He W., et al. Determinants of parental self-reported uptake of influenza vaccination in preschool children during the COVID-19 pandemic. Hum Vaccin Immunother. 2023; 19 (3): 2268392. https://doi.org/10.1080/21645515.2023.2268392.
- 20. Isba R., Brennan L., Egboko F., et al. Unmet vaccination need among children under the age of five attending the paediatric emergency department: a cross-sectional study in a large UK district general hospital. BMJ Open. 2023; 13 (6): e072053. https://doi.org/10.1136/bmjopen-2023-072053.
- 21. Nandi A., Shet A. Why vaccines matter: understanding the broader health, economic, and child development benefits of routine vaccination. Human Vaccines & Immunotherapeutics. 2020; 16 (8): 1900–1904. https://doi.org/10.1080/21645515.2019.1708 669.
- 22. Evdokimova O.V., Afanasyev S.V., Antonova O.A., Konopleva V.I., Gorelov I.S., Kruglova A.P., Biryukov V.V. Study of the main parameters of the immunogenicity of the Ultrix vaccine. I. P. Pavlov Russian Medical Biological Herald. 2020; 28 (1): 21–29. (In Russ.) https://doi.org/10.23888/PAVLOVJ202028121-29.

ЛИТЕРАТУРА

- 1. Гирина А.А., Заплатников А.Л., Петровский Ф.И. Вакцинация детей в рамках национального календаря профилактических прививок в условиях пандемии COVID-19: проблемы и пути решения. Русский медицинский журнал. Мать и дитя. 2021; 4 (1): 85–89. https://doi.org/10.32364/2618-8430-2021-4-1-85-89.
- 2. Shukla V.V., Shah R.C. Vaccinations in Primary Care. Indian J Pediatr. 2018; 85 (12): 1118–1127. https://doi.org/10.1007/s12098-017-2555-2.
- 3. Hill H.A., Chen M., Elam-Evans L.D., et al. Vaccination Coverage by Age 24 Months Among Children Born During 2018–2019 National Immunization Survey—Child, United States, 2019–2021. MMWR Morb Mortal Wkly Rep. 2023; 72: 33–38. https://doi.org/10.15585/mmwr.mm7202a3.
- 4. Широкоступ С.В., Лукьяненко Н.В., Салдан И.П. Эпидемиологический анализ заболеваемости клещевым вирусным энцефалитом сельского населения сибирского федерального округа. Наука молодых (Eruditio Juvenium). 2019; 7 (4): 518–525. https://doi.org/10.23888/HMJ201974518-525.
- Olusanya O.A., Bednarczyk R.A., Davis R.L. et al. Addressing Parental Vaccine Hesitancy and Other Barriers to Childhood/Adolescent Vaccination Uptake During the Coronavirus (COVID-19) Pandemic. Front. Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.663074.
- 6. Wang W., Zhang X.X., Zhang Z.N., et al. Trust in vaccination and its influencing factors among parents of children aged 0–6 years. Zhonghua Yu Fang Yi Xue Za Zhi. 2022; 56 (12): 1821–1827. https://doi.org/10.3760/cma.j.cn112150-20220211-00124.
- 7. Faksová K., Laksafoss A.D., Hviid A. COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine. 2024; 42 (9): 2200–2211. https://doi.org/10.1016/j.vaccine.2024.01.100.
- 8. Ackerson B.K., Sy L.S., Glenn S.C., et al. Pediatric Vaccination During the COVID-19 Pandemic. Pediatrics. 2021; 148 (1): e2020047092. https://doi.org/10.1542/peds.2020-047092.
- 9. Buchy P., Badur S. Who and when to vaccinate against influenza. Int J Infect Dis. 2020; 93: 375-387. https://doi.org/10.1016/j.ijid.2020.02.040.
- 10. Domingues C.M.A.S., Teixeira A.M.D.S., Moraes J.C. Vaccination coverage in children in the period before and during the COV-ID-19 pandemic in Brazil: a time series analysis and literature review. Jornal de Pediatria. 2023; 99 (1): 12–21. https://doi.org/10.1016/j.jped.2022.11.004.

- 11. Diallo M., Dicko I., Dembele S. et al. Comparing vaccination coverage before and during COVID-19 pandemic in children under one year in the health district of commune V in Bamako, Mali. BMC Pediatrics. 2023; 23: 599. https://doi.org/10.1186/s12887-023-04416-0.
- 12. Намазова-Баранова Л.С., Федосеенко М.В., Гринчик П.Р., Гирина А.А., Ковалёв С.В., Мазоха А.В., Макушина Е.Д., Малинина Е.И., Мусихина А.Ю., Перминова О.А., Пленсковская Н.Ю., Привалова Т.Е., Рычкова О.А., Семериков В.В., Фоминых М.В., Фуголь Д.С., Якимова Н.В., Ртищев А.Ю., Русинова Д.С. Привитость и охват иммунизацией в соответствии с национальным календарем профилактических прививок детского населения: одномоментное многоцентровое исследование. Педиатрическая фармакология. 2021; 18 (2): 110–117. https://doi.org/10.15690/pf.v18i2.2218.
- 13. Антонов О.В., Рощина О.В., Антонова И.В., Понкрашина Л.П. Вакцинация и иммунитет: роль педиатра в формировании у родителей приверженности профилактическим мероприятиям. Научный вестник Омского государственного медицинского университета. 2024; 4 (2): 20–27. https://doi.org/10.61634/2782-3024-2024-14-20-27.
- 14. Галицкая М.Г., Лебедева А.М., Ткаченко Н.Е., Макарова С.Г. Приверженность вакцинации: основные тенденции в современном обществе. Российский педиатрический журнал. 2022; 25 (4): 253–253.
- 15. Котова П.О. Сравнение охвата вакцинацией детей первого года жизни до и во время пандемии COVID-19. Материалы X Всероссийской с международным участием студенческой научно-практической конференции «Актуальные вопросы студенческой медицинской науки и образования», посвященной 175-летию со дня рождения академика И. П. Павлова и 120-летию со дня получения им Нобелевской премии; ФГБОУ ВО РязГМУ Минздрава России. 2024: 102–103.
- 16. Kaur G., Danovaro-Holliday M.C., Mwinnyaa G., et al. Routine Vaccination Coverage Worldwide, 2022. MMWR Morb Mortal Wkly Rep. 2023; 72 (43): 1155–1161. https://doi.org/10.15585/mmwr.mm7243a1.
- 17. Liu Y., Bruine de Buin W., Kapteyn A., Szilagyi P.G. Role of Parents' Perceived Risk and Responsibility in Deciding on Children's COVID-19 Vaccination. Pediatrics. 2023; 151 (5): e2022058971. https://doi.org/10.1542/peds.2022-058971.
- 18. Caudal H., Briend-Godet V., Caroff N., et al. Vaccine distrust: Investigation of the views and attitudes of parents in regard to vaccination of their children. Ann Pharm Fr. 2020; 78 (4): 294–302. https://doi.org/10.1016/j.pharma.2020.03.003.
- 19. Qu S., Yang M., He W., et al. Determinants of parental self-reported uptake of influenza vaccination in preschool children during the COVID-19 pandemic. Hum Vaccin Immunother. 2023; 19 (3): 2268392. https://doi.org/10.1080/21645515.2023.2268392.
- 20. Isba R., Brennan L., Egboko F., et al. Unmet vaccination need among children under the age of five attending the paediatric emergency department: a cross-sectional study in a large UK district general hospital. BMJ Open. 2023; 13 (6): e072053. https://doi.org/10.1136/bmjopen-2023-072053.
- 21. Nandi A., Shet A. Why vaccines matter: understanding the broader health, economic, and child development benefits of routine vaccination. Human Vaccines & Immunotherapeutics. 2020; 16 (8): 1900–1904. https://doi.org/10.1080/21645515.2019.1708 669.
- 22. Евдокимова О.В., Афанасьев С.В., Антонова О.А., Коноплева В.И., Горелов И.С., Круглова А.П., Бирюков В.В. Изучение основных параметров иммуногенности вакцины «Ультрикс». Российский медико-биологический вестник им. академика И. П. Павлова. 2020; 28 (1): 21–29. https://doi.org/10.23888/PAVLOVJ202028121-29.

FUNDING SOURCES

This study was not supported by any external sources of funding.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

THE AUTHORS' CONTRIBUTION TO THE WORK

Natalia A. Belykh — conceptualization, formal analysis, visualization, writing: review & editing.

Polina O. Kotova — formal analysis, visualization, writing: original draft.

Inna V. Pisnyur — formal analysis, investigation, visualization.

Elena V. Stezhkina — investigation.

ВКЛАД АВТОРОВ В РАБОТУ

Белых Н. А. — разработка концепции, формальный анализ, подготовка текста: оценка и редактирование.

Котова П. О. — формальный анализ, работа с данными, подготовка текста.

Пизнюр И. В. — проведение исследования, формальный анализ, работа с данными.

Стежкина Е. В. — проведение исследования, работа с данными.

CONSENT FOR PUBLICATION

The legal representatives voluntarily signed an informed consent to the processing of personal data.

ИНФОРМИРОВАННОЕ СОГЛАСИЕ НА ПУБЛИКАЦИЮ

Законные представители добровольно подписали информированное согласие на обработку персональных данных.